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On the Involvement of Lipoic Acid 
in a-Keto Acid Dehydrogenase Complexes 

Sir: 

Herein we report the reactivity of thiazolium salt derived 
acyl anion equivalents (see 1, Scheme I) toward sulfur elec-
trophiles and provide a model for the thioester-forming step 
catalyzed by the lipoic acid containing enzymes (2), the a-keto 
acid dehydrogenases.1-2 This class of enzymes mediates the 
production of energy-rich thioesters of coenzyme A (e.g., acetyl 
coenzyme A, 5) by oxidative decarboxylation of a-keto acids 
(e.g., pyruvate). Our work, detailed below, focuses on the 
formation of the intermediate thioester 4 and supports the 
direct reductive acylation step3 depicted in Scheme I. 
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In our model system an equivalent of the biological "active 
aldehyde" (1) is generated by proton abstraction from the 
crystalline precursor 6 (Scheme II).4 Table I shows results of 
the trapping of in situ generated enamine 7 by a variety of 
electrophiles. As precedented,2g 7 transfers the acetyl moiety 
to methyl vinyl ketone (entries 1 and 2). The reactions of 7 with 
sources of electrophilic sulfur (entries 3-6) mimic the pyruvate 
dehydrogenase mediated production of enzyme-bound 

acetyldihydrolipoic acid (4, Scheme I). 
Competing, base-promoted reaction pathways exist for 

precursor 6 (Scheme II). Treatment of 6 with 1,5-diazabicy-
clo[5.4.0]undec-5-ene (DBU) not only generates enamine 7, 
but, as well, induces fragmentation of 6 to ylide 8 and acetal-
dehyde.5 Reaction of 7 with disulfides yields thioesters and 
thiols; competing reaction of 8 with disulfides yields sulfeny-
lated products (e.g., 9a,b) and thiols. Thus, the yield of thiols 
produced in the model reaction of 6 with disulfides substan­
tially exceeds the yield of thioesters (Table I, entries 4 and 5) .6 

In an independent experiment, the ylide 8, generated from 
3-benzyl-4-methylthiazolium tetrafluoroborate7 and DBU 
reacted rapidly with benzyl disulfide yielding benzylthiol (79%, 
GLC yield) and sulfenylated product 9a; 9b was isolated8 

(74%) from the reaction of ylide 8 with /V-(phenylthio)-
phthalimide9 (PhS-Phth). 
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The facile sulfenylation of ylide 8 (Scheme II) precludes 
efficient generation of thioesters starting from ylide 8 plus 
acetaldehyde and disulfides. One (1.0) equivalent of acetal-
dehyde reacts with 5.0 equiv of diphenyl disulfide in tetrahy-
drofuran (THF) containing 1.0 equiv of 3-benzyl-4-methyl-
thiazolium tetrafluoroborate7 and 1.0 equiv of DBU (cf. Table 
I, entry 4) producing <1% yield of acetylthiophenol but a 73% 
yield of thiophenol (GLC yields based on CH3CHO). 

The base-initiated fragmentation of precursor 6 can be 
blocked using the methylated derivative 10.10 In situ enamine 
generation from 10 and trapping with A'-(phenylthio)-
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Table I. Reactions of 2-(a-Hydroxyethyl)-3-benzyl-4-methylthiazolium Tetrafluoroborate (6) as an Acyl Anion Equivalent 

entry electrophile 
solvent, 

base 
conditions, 
time (temp) 

product 
(% yield) 

1 
2 
3 
4 
5 
6 

methyl vinyl ketone0 

methyl vinyl ketone" 
PhS-Phth0 

PhS-SPh* 
PhCH2S-SCH2Ph* 
EtS-SEt* 

EtOH, DBU* 
EtOH, Et3N^ 
THF1DBU* 
THF, DBU* 
THF, DBU* 
THF1DBU* 

0.5 h (ambient temp) 
15 h (reflux), plus 20 h (ambient temp) 
16 h (ambient temp) 
5 min (ambient temp) 
5 min (ambient temp) 
5 min (ambient temp) 

2,5-hexanedione (40)c 

2,5-hexanedione (49^ 
CH3COSPh (42KJ 

CH3COSPh (32),<v PhSH (74)^' 
CH3COSCH2Ph (13),c/ PhCH2SH (88)c'' 
CH3COSEt (33),^' EtSH* 

" 1.0 equiv used vs. 6. * 1.0 equiv of DBU (l,5-diazabicyclo[5.4.0]undec-5-ene) used vs. 6. c GLC yield (4.1%SE-30on Chromosorb G, 
7 ft), determined relative to hydrocarbon standard.'d 7.2 equiv OfEt3N used vs. 6. ' Isolated yield as bisoxime, mp 129-132 0CY Isolated 
yield. * 5.0 equiv of disulfide used vs. 6. * EtSH yield not determined owing to interfering solvent peak in GLC run. ' Identity confirmed by 
GLC-mass spectrum (comparison with authentic sample). 
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phthalimide9 yields the crystalline adduct l l 1 1 (74%). The 
formation of 11 directly parallels the biological formation of 
tetrahedral intermediate 3 (Scheme I) and lends support to the 
mechanism3 of Scheme I. An earlier proposed mechanism12 

for the conversion 1 + 2 —• 3 invoked two steps: (a) an oxida­
tion-reduction of 1 and 2, yielding 2-acetylthiazolium salt plus 
dihydrolipoate, and (b) collapse of these intermediates, giving 
3. In our model system this possibility is ruled out by the 
blocking methyl group. Based on our results, we suggest that 
the biological generation of thioesters of coenzyme A from 
a-keto acids occurs via the direct reductive acylation of en­
zyme-bound lipoic acid by the "active aldehyde," as first for­
mulated by Ingraham (Scheme I).3 

Although the reactions summarized above lend further 
credence to the mechanisms of Scheme I, they do not directly 
address the involvement of the 1,2-dithiolane, lipoic acid, in 
the biological system. As its methyl ester, lipoic acid is com­
pletely unreactive under conditions13 which produce thioesters 
from linear disulfides or from Af-(phenylthio)phthalimide. It 
remains to be established whether thermodynamic or kinetic 
factors govern the lack of reactivity of enamine 7 toward 
methyl lipoate. Schmidt et al.ld discuss ring strain and geo­
metrical factors which may render 1,2-dithiolanes kinetically 
more reactive than linear disulfides toward nucleophiles (e.g., 
7). Thermodynamic factors may then govern the stability of 
methyl lipoate in our model system. The enforced proximity 
of the thiol (thiolate) in a tetrahedral intermediate such as 3 
could well drive the equilibrium 1 + 2 «=* 3 (Scheme I) toward 
the 1,2-dithiolane and enamine.14-15 The position of the equi­
librium should be pH dependent, however. In particular, in our 
model system the tertiary amine.(DBU) present ensures an 
appreciable concentration of thiolate anion (conjugate base 
of intermediate 3). At the pyruvate dehydrogenase active site, 
the reductive acylation of enzyme-bound lipoic acid could be 
driven by protonation of the dihydrolipoate intermediate (see 
3). We currently pursue a synthesis of a blocked (O-methyl-
ated) version of 3 (cf. 11) as a model to study the facility and 
possible pH dependence of the conversion 3 —• 1 + 2. 
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Mechanism of Photosubstitution of (7/5-CsHs)2Fe2(CO)4 
by Triphenylphosphine and Triisopropyl Phosphite. 
Direct Observation of a Binuclear Intermediate, 
(r/5-C5H5)2Fe2(CO)4JP[OCH(CH3)2]3!, a Molecule 
with a Carbonyl Bridge but No Metal-Metal Bond 

Sir: 

Very little is known about the mechanisms of photochemical 
reactions of polynuclear complexes containing bridging car­
bonyl ligands.1 For this reason, we have been investigating the 
photochemistry of Cp2Fe2(CO)4 (Cp = ^-C5Hs), a molecule 
in which the Fe-Fe unit is bridged by two carbonyls.2 We 
communicate here the results of experiments that strongly 
suggest that the photosubstitution mechanism employed by 
Cp2Fe2(CO)4 is quite different from that3'4 of unbridged 
metal-metal-bonded binuclear complexes, a difference that 
can be attributed to the presence of the bridging groups. 

Irradiation of Cp2Fe2(CO)4 in the presence of PPh3
le or 

P(O-Z-Pr)3 in cyclohexane solution at room temperature leads 
to quantitative or near-quantitative conversion to 
Cp2Fe2(CO)3(PR3) (Figure 1): 

Cp2Fe2(CO)4+ PR3-^Cp2Fe2(CO)3(PR3)+ CO (1) 

R = Ph, O-Z-Pr 

Of particular mechanistic significance is our observation that 
photolysis of a solution of Cp2Fe2(CO)4 and P(O-Z-Pr)3 in 
ethyl chloride (or THF) solution at —78 0C yields a yellow 
intermediate. Formation of this intermediate does not occur 
in the absence of P(O-Z-Pr)3. The yellow solution containing 
the intermediate turns green upon warming to room temper­
ature, and infrared and electronic spectroscopic measurements 
show that conversion to Cp2Fe2(CO)3[P(O-Z-Pr)3]

5 has oc­
curred. 
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